Mulliken Population Analysis

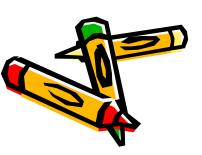
1966 Nobel Prize motivation: "for Mulliken fundamental work concerning chemical bonds and the electronic structure of molecules by the molecular orbital method"

The basics of quantum chemistry

- The n-electronic wave function $\, \psi \,$

$$|\psi(x_1,...,z_n,m_{s_1},...,m_{s_n})|^2 dx_1 dy_1 dz_1 \dots dx_n dy_n dz_n$$

• probability of simultaneously finding \bar{e} 1 with spin m_{s1} in the volume $dx_1dy_1dz_1$ at (x_1,y_1,z_1) \bar{e} 2 with spin m_{s2} in the volume $dx_2dy_2dz_2$ at (x_2,y_2,z_2) and so on.



One-electronic density

The probability density p of finding an electron (ANY!!!) in the neighborhood of point (x,y,z) is

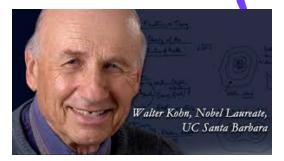
$$\rho(x, y, z) = n \sum_{all \ m_s} \int ... \int \left| \psi(x, y, z, x_2, ..., z_n, m_{s_1}, ..., m_{s_n}) \right|^2 dx_2 ... dz_n$$

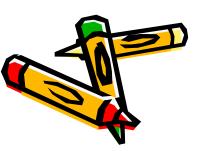
• In most cases - knowing the ρ is knowing the system!

$$\left\langle \hat{A} \right\rangle = \iiint A(x, y, z)\rho(x, y, z)dxdydz$$

$$Z = \sum_{m_s} \iiint e\rho(x, y, z)dxdydz = en$$

A 1.000.000\$ question – How does ρ look like?





• The n-electronic wave function ψ in the case of Hartree-Fock (HF) approximation:

$$\psi_{HF}(1,2,...n) = \det \begin{bmatrix} \phi_1(1) & \phi_2(1)... & \phi_n(1) \\ \phi_1(2) & \phi_2(2)... & \phi_n(2) \\ ... & ... & ... \\ \phi_1(n) & \phi_2(n)... & \phi_n(n) \end{bmatrix}$$

• <u>Home work</u> (3 points bonus!). Prove: $\rho_{HF}(x, y, z) = \sum n_j |\phi_j|^2$ n_j is the "occupation number" ($n_j = 0,1,2$)

The energy functional = density functional (W/. Kohn) $\rho(x, y, z) = \sum n_j |\phi_j|^2$

- Exact WF:
- n_j is the "generalized occupation number" ($n_j \cong 0 \text{ or } 1$); ϕ_j natural orbitals j=1,..., ∞
- Kohn Sham : $E=E[\Psi]=\int \Psi^* \hat{H}\Psi dV = E[\rho]=?$
- **HF**: $E^{HF}[\rho] = T[\rho] + V_{ne}[\rho] + (V_c[\rho] + V_{ex}[\rho])$
- DFT: $E[\rho]=T[\rho]+V_{ne}[\rho]+(V_c[\rho]+V_{ex}[\rho]+V_{cor}[\rho])$ single-electron theory including correlation!

MO-LCAO approximation

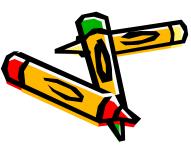
• In the formula: $\rho_{HF}(x, y, z) = \sum_{j} n_{j} |\phi_{j}(x, y, z)|^{2}$

 ρ is found as the sum the probability-density functions of all MOs φ_{j}

The MOLCAO approximation:

 $\phi_{j} = \sum_{s=1}^{b} c_{sj} \chi_{s} = c_{1j} \chi_{1} + c_{2j} \chi_{2} + \dots + c_{bj} \chi_{b}$ Thus $\rho = \sum_{j=1}^{m} n_{j} \phi_{j}^{*} \phi_{j} = \sum_{r=1}^{b} \sum_{s=1}^{b} \sum_{j=1}^{m} n_{j} c_{rj}^{*} c_{sj} \chi_{r}^{*} \chi_{s} = \sum_{r=1}^{b} \sum_{s=1}^{b} D_{rs} \chi_{r}^{*} \chi_{s}$

> where m is the number of MOs; and b – is the number of AOs



$$D_{rs} = \sum_{j=1}^{m} n_j c_{rj}^* c_{sj}$$

- C_{rj} the contribution of r-AO to j-MO
- The probability density associated with one electron in φ_j is $|\varphi_j|^2$

Normalization condition:

 $\int |\phi_j|^2 dV_j = 1 = c_{1j}^2 + c_{2j}^2 + \dots + c_{bj}^2 + \sum 2c_{rj}c_{sj}S_{rs}$

where the S's are overlap integrals:

$$S_{rs} = \int \int \chi_r \chi_s dv_r dv_s$$

Mulliken population analysis $\int |\phi_j|^2 dV_j = 1 = c_{1j}^2 + c_{2j}^2 + \dots + c_{bj}^2 + \sum_{r < s} 2c_{rj}c_{sj}S_{rs}$

- An electron in the MO φ_j contributes :
 - $n_{rj} = n_j c_{rj}^2$ to the net population in AO χ_r ,
 - $n_{r-s,j} = 2n_j c_{rj} c_{sj} S_{rs}$ to the overlap population of χ_r and χ_s .
- *Mulliken* proposed a method that apportions the electrons of an *n*-electron molecule into :
- 1. Net populations n_r in the AOs;
- 2. Overlap populations n_{r-s} for all pairs of AOs.

$$n_r = \sum_j n_{r,j} \text{ and } n_{r-s} = \sum_j n_{r-s,j}$$

Mulliken characteristics

The sum of all the net and overlap populations equals the total number of electrons in the molecule:

$$\sum_{r} n_{r} + \sum_{r>s} \sum_{s} n_{r-s} = n = \int \rho dV = \sum_{j} n_{j} \int |\phi_{j}| dV$$

- Gross atomic (A) population: $n_A = \sum_{r \in A} n_r + \frac{1}{2} \sum_{(r>s) \in A} n_r$
- Mulliken charge of atom $A : Z_A = en_A^{r \in A}$
- Mulliken's matrix (M_{rr}=n_r and M_{rs}=n_{r-s}) could be divided according to atomic indexes A, B, ...
 Then number of blocks in the A-B part of the matrix M defines bond order
 between atoms A and B
 NOTE: M_{rs} = D_{rs}*S_{rs}

Bonding Mulliken population analysis example : C2H2

- CEC bonding. There are two π orbitals composed of two $2p_x$ and two $2p_y$ atomic orbitals of the two C atoms and σ bond composed of the 1s, 2s and $2p_z$ orbitals.
- The Gaussian output. Density matrix D_{rs} (C1-C2 part) C2\C1 15 $2P_7$ $2P_X$ 25 $2P_{v}$ 15 0.04570 -0.12510 0.14378 0.00000 0.00000 25 -0.12510 0.24810 -0.28900 0.00000 0.00000 2P₇ -0.14378 0.28900 -0.30554 0.00000 0.00000 2P_x 0.00000 0.00000 0.00000 0.75822 0.00000 0.00000 0.00000 2P_v 0.00000 0.00000 0.75822