Mulliken Population Analysis

1966 Nobel Prize motivation: "for Mulliken fundamental work concerning chemical bonds and the electronic structure of molecules by the molecular orbital method"

 \mathcal{L}^2

The basics of quantum chemistry

• The n-electronic wave function ψ

$$
\left|\psi(x_1,...,z_n,m_{s1},...,m_{sn})\right|^2 dx_1 dy_1 dz_1...dx_n dy_n dz_n
$$

• probability of simultaneously finding \bar{e} 1 with spin m_{s1} in the volume $dx_1dy_1dz_1$ at (x_1,y_1,z_1) \bar{e} 2 with spin m_{s2} in the volume $dx_2dy_2dz_2$ at (x_2,y_2,z_2) and so on.

One-electronic density

• The probability density ρ of finding an electron $($ ANY!!!) in the neighborhood of point (x,y,z) is

$$
\rho(x, y, z) = n \sum_{all m_s} \int ... \int \left| \psi(x, y, z, x_2, ..., z_n, m_{s_1}, ..., m_{s_n}) \right|^2 dx_2...dz_n
$$

• In most cases - knowing the ρ is knowing the system!

$$
\left\langle \hat{A} \right\rangle = \iiint_{m_s} A(x, y, z) \rho(x, y, z) dx dy dz
$$

$$
Z = \sum_{m_s} \iiint_{\mathcal{B}} e \rho(x, y, z) dx dy dz = en
$$

A 1.000.000\$ question – How does *ρ* look like?

• The n-electronic wave function ψ in the case of Hartree-Fock (HF) approximation:

$$
\psi_{HF}(1,2,...n) = \det \begin{pmatrix} \phi_1(1) & \phi_2(1)... & \phi_n(1) \\ \phi_1(2) & \phi_2(2)... & \phi_n(2) \\ ... & ... & ... \\ \phi_1(n) & \phi_2(n)... & \phi_n(n) \end{pmatrix}
$$

• Home work (3 points bonus!). Prove: ϵ_0 and n_j is the "occupation number" ($n_j = 0.1,2$) $\rho_{HF}(x, y, z) = \sum_{j} n_{j} |\phi_{j}|^{2}$ *j*

The energy functional = density functional (W. Kohn) $\rho(x, y, z) = \sum n_j |\phi_j|^2$

- Exact WF:
- \cdot n_j is the "generalized occupation number" $(n_j \cong 0 \text{ or } 1)$; φ_j – natural orbitals j=1,...,∞

j

- \cdot Kohn Sham : $E=E[\Psi]=\int \Psi^* \hat{H} \Psi dV = E[\rho]=?$
- HF: $E^{HF}[\rho] = T[\rho] + V_{ne}[\rho] + (V_{c}[\rho] + V_{ex}[\rho])$
- DFT: $E[\rho] = T[\rho] + V_{ne}[\rho] + (V_{c}[\rho] + V_{ex}[\rho] + V_{cor}[\rho])$ single-electron theory including correlation!

MO-LCAO approximation

• In the formula: $\rho_{HF}(x,y,z) = \sum n_j |\phi_j(x,y,z)|^2$ *j*

 ρ is found as the sum the probability-density functions of all MOs ρ_j

• The MOLCAO approximation:

$$
\phi_j = \sum_{s=1}^b c_{sj} \chi_s = c_{1j} \chi_1 + c_{2j} \chi_2 + ... + c_{bj} \chi_b
$$

\nThus
$$
\rho = \sum_{j=1}^m n_j \phi_j^* \phi_j = \sum_{r=1}^b \sum_{s=1}^b \sum_{j=1}^m n_j c_{rj}^* c_{sj} \chi_r^* \chi_s = \sum_{r=1}^b \sum_{s=1}^b D_{rs} \chi_r^* \chi_s
$$

where m is the number of MOs; and $b -$ is the number of AOs

Density Matrix

$$
D_{rs} = \sum_{j=1}^m n_j c_{rj}^* c_{sj}
$$

- \cdot C_{ri} the contribution of r-AO to j-MO
- The probability density associated with one electron in $\boldsymbol{\varphi}_j$ is $|\,\boldsymbol{\varphi}_j\,|^2$

Normalization condition:

•

 $\int |\phi_j|^2 dV_j = 1 = c_{1j}^2 + c_{2j}^2 + ... + c_{bj}^2 + \sum 2c_{rj}c_{sj}S_{rs}$

where the $\mathcal S$ s are overlap integrals: $r \leq s$

$$
S_{rs} = \iint \chi_r \chi_s dv_r dv_s
$$

Mulliken population analysis $\int |\phi_j|^2 dV_j = 1 = c_{1j}^2 + c_{2j}^2 + ... + c_{bj}^2 + \sum 2c_{rj}c_{sj}S_{rs}$ *r s* \lt

- An electron in the MO φ_j contributes :
	- n_{rj} = $n_{j}c_{rj}^{2}$ to the net population in AO χ_{rr}
	- \cdot n_{r-s,j} =2n_jc_{rj}c_{sj}S_{rs} to the overlap population of χ_r and χ_s .
- Mulliken proposed a method that apportions the electrons of an n-electron molecule into :
- Net populations n_r in the AOs;
- 2. Overlap populations n_{res} for all pairs of AOs.

$$
n_r = \sum_j n_{r,j} \text{ and } n_{r-s} = \sum_j n_{r-s,j}
$$

Mulliken characteristics

The sum of all the net and overlap populations equals the total number of electrons in the molecule: \sum \int \int \int \int

$$
\sum_{r} n_r + \sum_{r>s} \sum_{s} n_{r-s} = n = \int \rho dV = \sum_{r} n_j \int |\phi_j|^2 dV
$$

- Gross atomic (A) population : $A = \sum_{r \in A} n_r$ ¹
2 $\sum_{(r>s) \in A} \sum_{s \in A} n_{r-s}$ $n_{A} = \sum n_{r} + \frac{1}{2} \sum n_{r-1}$ ∈ \angle \angle $(r > s) \in A$ s∈ $=\sum n_r^2 + \frac{1}{2} \sum$
- Mulliken charge of atom $A:Z_A=en_A^{real}$
- Mulliken's matrix $(M_{rr}=n_r$ and $M_{rs}=n_{r-s})$ could be divided according to atomic indexes A, B, … Then number of blocks in the A-B part of the matrix M defines bond order **D** between atoms A and B NOTE: $M_{rs} = D_{rs} * S_{rs}$

Bonding Mullliken population analysis example : C2H2

- $c\equiv c$ bonding. There are two π orbitals composed of two $2p_x$ and two $2p_y$ atomic orbitals of the two C atoms and σ bond composed of the 1s, 2s and 2p_z orbitals.
- The Gaussian output. Density matrix D_{rs} (C1-C2 part) $C2\setminus C1$ 1S 2S $2P_{7}$ 2P_X 2P_y 1S 0.04570 -0.12510 0.14378 0.00000 0.00000 2S -0.12510 0.24810 -0.28900 0.00000 0.00000 2PZ -0.14378 0.28900 -0.30554 0.00000 0.00000 2PX 0.00000 0.00000 0.00000 0.75822 0.00000 2PY 0.00000 0.00000 0.00000 0.00000 0.75822

